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Abstract

Executing a Probabilistic Simple Temporal Network (PSTN)
amounts at scheduling, i.e. dispatch, a set of events un-
der time uncertainty. This constitutes a NP-hard online op-
timization problem. The right execution time must be dy-
namically assigned to each event of the PSTN such that the
temporal constraints are met, whereas activity durations are
progressively observed as the execution unfolds. We pro-
pose a dispatching algorithm based on Monte Carlo Tree
Search, called Lila, with the following characteristics: (i) it
is an anytime algorithm, both offline and online, conjectured
asymptotically optimal; (ii) it returns the current probabil-
ity of success, either before or at any moment during opera-
tions; (iii) it handles any possible continuous or discrete, even
non-parametric, probability distributions, as well as inter-
dependencies between random variables, exogenous and en-
dogenous uncertainty; and (iv) can be easily extended to
handle probabilistic external events, PSTNs with resources,
PSTNs with cutoff times and precondition chains, ezc. Lila is
universal in the sense that it can handle any dispatching pro-
tocol, simply by specifying it to the algorithm. It has the un-
limited flexibility offered by the simulation paradigm, and is
conjectured to asymptotically converge to optimal decisions
and/or robustness approximations.

1 Introduction

Temporal networks formalize the arrangement and inter-
dependencies of tasks, or activities, that compose an oper-
ational plan. In a simple temporal network (STN), activities
are modelled as a finite set of time events, such as start and
end times. In practice, some activity durations, considered
as contingent, remain unknown beforehand and are revealed
during execution (decided by nature). When some stochastic
knowledge on the uncertain durations exists, one can model
it as (estimated) probability distributions, leading to the ex-
tending concept of probabilistic STN, or PSTN. Solving a
PSTN then amounts at finding an assignment of time values
to executable events, such that assigned values together with
observed ones fulfil all the constraints between events (e.g.,
end of task A must happen between 10 and 20 minutes be-
fore the beginning of B). Whenever such assignment exists,
a network is said to be controllable. When the operational
assumptions enable it, the assignment may be dynamically
constructed, i.e. as durations are observed, the time values
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Figure 1: A simplified hypothetical sol on Mars for two
planetary rovers, encoded as a PSTN. Bold: controllable.
Dashed: contingent.

are assigned. Yet, even under dynamic decision, due to un-
fortunate durations, a network may reveal as violating some
of the temporal constraints during execution.

When there is uncertainty with respect to temporal con-
straint violation, it is critical to determine the actions (i.e.
assign time values to time events) that maximize the proba-
bility of successful execution. Furthermore, at a given state
of the online execution, determining the current probability
of success according to past decisions and events as well
as the remaining uncertainty is a major importance too. In
case this probability falls below some threshold of accept-
able risk, the operators may decide to interrupt the execution
before it reaches a problematic or dangerous state.

Fig. 1 shows an hypothetical example of Mars rovers
operations as a PSTN. Each rover has three activities in
sequence: drive towards a science site, perform a science
experiment, and relay results to an orbiter. A special time
point £y = O represents the beginning of the operations.
Time events are linked by temporal constraints, either con-
trollable or contingent. The rovers work independently dur-
ing their driving and science activities, and eventually coor-
dinate for the communication time window, which strictly
happens within time 15 to 20. Furthermore, a maximum of
3 time units is authorized from the end of experiments to the
start of relay activities, implying that starting everything as
soon as possible may be problematic. The duration of the
driving and science activities are uncertain, and encoded in
the PSTN as contingent constraints described by probability
distributions. Ideally, a perfect assignment of all executable
time points would work for any situation imposed by na-
ture. In practice that is very restrictive, if not impossible,



especially in highly uncertain environments. It raises the fol-
lowing questions. What is the probability that we succeed at
executing the PSTN, namely that our rovers both meet the
communication window? How to compute online decisions
in an optimal way, such that we maximize this probability?

Contributions. We describe how the MCTS framework
can be used in the context of scheduling time points in con-
strained temporal networks under uncertainty, namely PSTN
dispatching. To the best of our knowledge, this is the first ap-
plication of MCTS to temporal networks. Unlike mathemat-
ical approaches, or even those based on pure Monte Carlo
simulation, our method is an anytime algorithm; it is con-
jectures as asymptotically optimal (we let the demonstration
for future work), and allows to consider various extensions
to the classical PSTNs with minor adaptations. Moreover,
MCTS allows to simply handle very complicated concepts,
some of them being described in this section, such as de-
pendent random variables or even endogenous uncertainty
(which is a topic rarely covered in the literature). A prelimi-
nary experimental analysis is conducted.

2 Probabilistic Simple Temporal Networks

Simple Temporal Network is a popular formalism for tem-
poral constraint reasoning (Dechter, Meiri, and Pearl 1991),
framed as a constraint satisfaction problem over time point
variables: a STN is a tuple (T,C), where T is a set of
time points and C' is a set of constraints c(¢;,¢;) that en-
code bounds on the differences between pairs of time points:
lij S (tj — tl) S Ui, ie. (tj - tz) € [lm’,uij}. The goal is
then to assign time values to every time points, such that all
the ¢; — t; duration constraints are respected.

Most realistic operational contexts account for temporal
uncertainty. PSTN is a natural extension of STN in which
probability density functions are associated to temporal con-
straints, such as activity durations (Tsamardinos 2002). In a
PSTN, the executable time points Tr are determined by the
agent, and contingent time points T are assigned by nature.
A solution is called a schedule, a specific assignment to all
t; € Tg. Given a particular realization of T, a schedule
is consistent if it satisfies all the constraints of the network.
In practice a contingent duration is described by a (usually
estimated) probability distribution (¢; — t;) = X ;.

In practice, a time point in the PSTN often stands for ei-
ther the start (e.g. t3 in Fig. 1) or the end (¢4) of a partic-
ular activity (Roverl::expe). The starting point of activities
usually constitute the set of executable time points Tr. A
schedule determines the execution time of ¢; € T, and re-
quirement constraints in the form c(t;,t;) state how late ¢;
can occur regarding to any previous time points ¢;. When
t; € T, which could represent an activity completion, the
duration (¢; — t;) remains unknown prior to execution.

Policies and Dispatching protocol. Operational contexts
such as space missions usually pose computational and
power limitations on recomputing a schedule in the middle
of the operations (Chi et al. 2019). Yet, the use of a static
schedule is often either impossible in practice, or comes with

a significant waste in terms of operational yield and time.
Such approach is currently operating Curiosity rover, with
static schedules that overestimate processing times by 30%
in average (Gaines et al. 2016) to account to execution un-
certainty. Let (2 be the set of all possible realizations of the
random contingent edges’ duration in the PSTN. A trivial
approach to avoid both static scheduling and online reopti-
mization is to precompute particular schedules for each pos-
sible situation that may arise, leading to a policy. Naturally,
the size of €2 is usually problematic. Instead, Perseverance
(M2020) rover is equipped with a non-backtracking onboard
scheduler, designed to take online decisions based on current
observations (Rabideau and Benowitz 2017; Chi et al. 2018;
Agrawal et al. 2021a,b). Due to computational limitations,
such online decisions must remain very light, thus following
a predefined strategy: a dispatching protocol (DP). In partic-
ular, a DP usually aims at avoiding costly online reoptimiza-
tions. For example, Rabideau and Benowitz (2017) describe
an average O(n?) quadratic DP(-) protocol to be computed
by the onboard scheduler in the Mars Perseverance rover, in
order to adapt decisions online (i.e. I'}; = T'%,) based on ob-
servations and pre-optimized parameters (Chi et al. 2019).

NextFirst dispatching protocol. The NextFirst protocol
(Brooks et al. 2015), also known as DC-dispatch (Morris,
Muscettola, and Vidal 2001) or early execution (Lund et al.
2017), dynamically assigns a value to and dispatches each
time point (i.e. executes the PSTN) in O(n) linear time, by
starting activities as soon as possible. Let ¢; be a control-
lable time point in a PSTN, and I; = {(0, j), ..., (¢,7)} the
set of incoming edges in ¢;. Therefore, ¢; is assigned a time
value as soon as all the preconditions are validated, that is,
all the g, ..., t; time points are known, leading to the very
simple online decision rule:

t; = max(to—i—loj, c. ,ti+lij)~ (1)

In the case t; > min(¢to+ug;, ... ,ti+u;;), the dynamic
execution is interrupted and considered as failed. Naturally,
NextFirst protocol has linear complexity O(n). Back to our
PSTN example in Fig. 1, the value of ¢;; is then dynami-
cally set to max(t19, tg) as soon as tasks Rover2:expe and
Roverl:relay are completed. Execution fails if t1; exceeds
t10 + 3. Eventually, we hope for £15 < 20.

Formulation of the optimal dispatching problem

Assumptions and notations. We assume the operational
time horizon to be partitioned in & outcome and decision
stages. The random vector £ = £!,. .., ", with support 2,
describe all the possible sequences of outcomes. When nec-
essary, we designate by £t the sequence of outcomes of
scenario ¢ from time ¢ to time ¢’. The decisions to be taken
by the online scheduler during the operations are represented
by avectorx = z', ... 2" of IR", from which the schedule
can be trivially deduced. We refer to decisions z¢,. .., zt
as 2. The indicator function V*(N, ) returns 1 iff the
schedule x is consistent in scenario £. Operator E¢:[ - | des-
ignates the expectation over random variable £, condition-
ally to history ¢'*~!. In case of endogenous uncertainty,



E¢:[ - ] also depends on decisions z!*~!. Finally, X" rep-
resents the set of legal actions (i.e. time assignments) at time
t, which naturally depends on past actions z'*~! and his-
tory 51..15'

Multistage stochastic formulation. An optimal dispatch-
ing protocol necessary computes, in any possible situation
(i.e. given any possible past realizations and decisions), the
decisions that maximizes the probability that the current par-
tial schedule completes to a consistent schedule. The fol-
lowing multistage stochastic program determines the opti-
mal dispatching decisions 2! at a current time ¢:

argmax E£t+1|: max  Feite
zteXt zttleXt+1

1..
[. .. max Egh,|: max V¥
gh—1lcXh—1 zheXh

‘el @

where the maximum value of the first expectation, when
t = 0, is by definition equal to the Degree of Dynamic Con-
trollability (DDC) of the network (Saint-Guillain et al. 2020,
2021), the probability of success under perfect reoptimiza-
tion. Consequently, this must be at least equal to the proba-
bility of success under the NextFirst protocol.

The nested expectations in (2) form a tree structure, well
known as the scenario tree. Unfolding the maximization op-
erators as well leads to a full decision-scenario tree as il-
lustrated in Fig. 2. Each path of the tree constitutes a pos-
sible scenario realization together with associated decisions,
asequence ¢, at, ..., & t". At time t, decisions 2! depend
on the current history ¢!* and maximize the expected value
E¢iv1[max,e+1 .. .] of the future decisions at time t+1 given
the remaining uncertainty, and so on until time 5 is reached.

A node €% hence represents a particular state, defined by
history ¢t and past decisions z!-*~1. Counter-intuitively,
we call node £ a decision node. This is because at this par-
ticular state, a decision 2! must be chosen amongst X¢. Fol-
lowing (2), z' is necessarily the decision maximizing the
probability that the partial schedule x!-* extends to a con-
sistent full schedule.

A node 2? represents a decision that has already been cho-
sen for time ¢. Since it directly leads to nodes representing
the possible realizations of £/1, we call xt a chance node.
Still following (2), the value of the decision z is given by
the expected value of the subsequent (and consequent) real-
izations.

3 Monte Carlo Tree Search

Solving problem (2) is computationally intractable in prac-
tice. Yet, a look at the associated tree immediately sug-
gests two classical approximation schemes: (a) limiting the
branching factor and (b) avoiding to consider less relevant
subtrees. Both approaches are compatible, and with a few
additional techniques described in this section, we will end
up with an adaptation of the well-known Monte Carlo Tree
Search (MCTS) algorithm to our PSTNs.

Limiting the branching factor. This can be achieved by
sampling a restricted number of children generated from
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Figure 2: Tree structure of the problem. The root node rep-
resents the current state (past decisions and realizations) at
time ¢. For simplicity, decision (resp. random) variables have
only two possible choices (resp. outcomes).

chance and/or decision nodes. At a decision node, a lim-
ited number of children zf, zf,... could either be chosen
in X* at random, or by following some predefined strategy
(a dispatching protocol!). At a time ¢ chance node, a limited
sample of random realizations of £*+! may constitute a per-
tinent restricted set of children nodes. In particular, even if
MCTS aims at dealing with large branching factors, this step
is still mandatory to obtain a discrete tree from the decision
and realization domains, which are continuous by nature.

Subtrees prioritization. While a huge part of the whole
tree depicted in Fig. 2 is already pruned by the simple action
of restricting the branching factor, the resulting tree is likely
to remain too big to be entirely explored, and further de-
creasing the branching factor may result in missing critical
decisions or outcomes. This is where MTCS comes at hand.
In fact, MCTS selects the most promising nodes (i.e. sub-
trees) to consider first by using a node value function, which
exploits a Monte Carlo sampling paradigm to approximate
and eventually evaluate the interest in visiting a subtree.

General MCTS approach and related work

MCTS is a general framework, which has already been well
described by the literature. The reader interested in a com-
plete description may refer to Browne et al.’s survey (2012),
Section III. The general MCTS algorithm can be outlined as:

MCTS keeps iteratively performing each of the following
four steps in turn, until the computation budget is reached:
1) select an expandable (non final) node; 2) expand the node
by generating one (or more) of its child nodes; 3) simulate
one path down the current tree, in order to reach a final state
from the newly created child node, without creating any new
node, but instead obtain a final state as quickly as possible;
4) backpropagate the final state value R, updating the es-
timated value V' (node) of each node along the path from
the new to the root node. Finally, the playing action repre-
sented by the best root child is returned once the computa-
tional budget is exhausted. An example of search tree being
gradually built using MCTS’s four steps is depicted in Fig-
ure 3. Some details of the tree may appear mysterious at



propagate

Figure 3: MCTS tree and iteration steps. A Decision node. O Chance node. [J Terminal node.

Algorithm 1: General MCTS.

1 root < CreateRootNode();
2 while computation budget not exhausted do

3 node < root;

4 while not node.IsExpandable() do

5 | node +— node.SelectChild();

6 child < node.ExpandOne();

7 if child.IsTerminal() then

8 \ child.BackPropagate(child.Evaluate());

9 else

10 for i < 1 to ni, do

11 \ child.BackPropagate(child.Simulate());

12 return root.BestChild();

this time, and will be clarified as we describe how we adapt
MCTS specifically for taking decisions in PSTNs.

How to select which node to expand, and therefore where
to grow the tree, is at the heart of MCTS and raises the ques-
tion of intensification versus diversification. Whereas a se-
lection policy based on intensification only is likely to end
up exploring a very narrow, specific, deep subtree, the op-
posite pure diversification would result in simple breadth-
first search. The most popular selection policy, called Upper
Confidence Bounds for Trees (UCT), makes its path from
the root node down to a leaf node to be expanded (i.e. not a
final game state) by diving through child nodes (lines 3-5 of
Algorithm 1), where node.SelectChild() maximizes

. /2 In nnode

where the first term V'(child) is the estimated value of the
child node and therefore encourages intensification. The sec-
ond term, with n"°% being the number of times a node or

one of its descendants ran a simulation, encourages diversi-
fication by promoting children being less visited than their
sibling nodes. In fact, a never visited child will be given co
value. The C parameter is usually empirically tuned to best
calibrate both terms. root. BestChild() classically returns the
root child maximizing either V' (child) or nhi!d, Remark that

whereas V“/’l"h(N ,€) in Eq. (2) indicates whether a leaf
node of the decision/outcome tree is a win or a loss state,
here V'(node) approximate the expected success value of a
terminal node belonging to the subtree defined by node.

MCTS with continuous action and outcome spaces.
The classical MCTS method has been developed for de-
terministic zero-sum games. Like stochastic games that in-
volve rolling a dice, our PSTNs involve uncertainty as the
contingent duration of some activity remains unknown un-
til one actually tries to execute it. Naturally, MCTS have
been adapted to deal with dice rolls, and variants have
been proposed (Browne et al. 2012; Cowling, Powley, and
Whitehouse 2012). However, most studies focus on par-
tially observable states, such as hidden cards in Poker, rather
than uncertainty. As PSTNs usually involve a continuous
time dimension, both realization outcomes and action de-
cisions must generally be chosen out of continuous do-
mains. Different methods have already been proposed in or-
der to obtain a discrete search space compatible with MCTS,
namely to implement functions node.isExpandable() and
node.ExpandOne(). Amongst the proposed approaches,
many are based on sampling a limited set of actions and/or
outcomes (Kearns, Mansour, and Ng 2002), that progres-
sively grows as the associated node is being visited (Chaslot
et al. 2008; Couétoux et al. 2011), a technique called pro-
gressive widening. In fact, Lila exploits the progressive
widening technique. Back to the node.SelectChild() func-



tion, Yee, Lisy, and Bowling (2016) proposed KR-UCT, an
alternative to UCT based on kernel regression, to better se-
lect and further share information between actions sampled
from continuous domains. They apply KR-UCT on the re-
markable problem of autonomous agents playing curling.

Dispatching a PSTN: a single-player game against
Nature

In a sense, our approach suggests to model our PSTN as
a single-player game against Nature. At a given state, the
player’s actions aim at choosing whether, for each of the
time events that are ready for execution, to schedule them
immediately or postpone. Depending on the player’s deci-
sions, dice rolls will then be used to represent the possible
random completion times of each started activity. Ideally, the
search tree being iteratively built by the MCTS algorithm
should directly approximate the full decision-scenario tree
depicted in Fig. 2. In practice however, depending on the
live decisions and outcomes, most of the time units in ¢..h
involve no decision nor outcome.

An equivalent, event-driven tree can be obtained by sim-
ply skipping all “empty” time units. Furthermore, this ap-
proach permits to get rid of discrete time units and to han-
dle a continuous time horizon. The MCTS tree depicted in
Fig. 3 gives an example of such construction, for our rover
PSTN example of Fig. 1. Here, the execution has not yet
started (i.e. current real time is zero) and MCTS is used to
approximate the full decision-scenario tree of our PSTN, be-
ginning with the decisions of when to schedule events ¢, and
t7. Recall that decision nodes (A) stand for a state where the
upcoming action is a decision, and chance nodes (O) states
involve a pending random outcome.

A path of our MCTS tree does not simply alternate de-
cision and chance nodes. In fact, the nature of the node,
and even the action being played, depends on the history
(path) rather than its depth. For instance, the node t3 = 4.6
at the bottom left is a chance node (O), whereas its sibling
t3 = 7.2 is a decision node (A). This is because in both
cases the history is t; = 1.8,t7 = 0,tg = 5.3,t3 = 4.6.
If £3 is to be scheduled directly after £5 at time 4.6, then the
upcoming event is the random outcome t4, since tg is only
at 5.3. If on the contrary t3 is delayed to 7.2, then the next
event concerns the action of deciding for tg.

Proposed PSTN-specific MCTS instantiation

We now describe how we currently propose to instantiate Al-
gorithm 1 in order to obtain a PSTN (online), asymptotically
optimal, dispatching algorithm.

node.IsExpandable() 'When executing a PSTN, both deci-
sions and outcomes must be selected from (continuous) infi-
nite domains. Similarly to Kearns, Mansour, and Ng (2002),
we experiment a fixed-size branching factor at both chance
and decision nodes. Therefore, the function returns true iff
the predefined size is not yet reached. We also consider
a more elaborated strategy, designing node.IsExpandable()
such that the branching factor of a node progressively in-
creases (Chaslot et al. 2008; Couétoux et al. 2011), hence

allowing the asymptotic completeness of the algorithm, that
is, the optimally robust decisions at defined by Eq. (2). The
branching factor of each node then depends on how many
times it has been visited, and follows Sn®, with n = n"od,

node.ExpandOne() At a chance node, a child is created
simply by sampling the associated random variable follow-
ing its own probability distribution. At a decision node, dif-
ferent approaches may be considered when selecting an ex-
ecution time. In order to eventually converge to a complete
search tree, any relevant execution time should be possibly
chosen. In this paper, the first generated child is executed
as soon as possible according to the PSTN lower bounding
time constraints, without any delay. Any other child gets as-
signed an execution times randomly sampled, with a proba-
bility that decreases with the delay. This is achieved by tak-
ing the absolutes values from a normal distribution centred
at delay 0.

Note that if the decision nodes are limited to have only
one child, then the MTCS tree will naturally converge to
represent the behavior of the PSTN under the NextFirst dis-
patching protocol, which consists in executing each time
point as soon as possible. In theory, the node. ExpandOne()
can therefore be implemented in order to represent any com-
putable dispatching protocol in MCTS. However, in order to
get completeness, any admissible execution delay should be
eventually considered.

node.isTerminal() A node is terminal as soon as either all
the time points of the PSTN (either associate to chance or
decision nodes) have been attributed a value, or if the value
of some time point is not consistent with the PSTN tem-
poral constraints. In practice, an inconsistency may be de-
tected earlier, by comparing the current time assignments
with the remaining possible future decisions and outcomes,
therefore allowing to avoid further exploring a subtree which
can be proven to be inconsistent. For that we refer to estab-
lished theoretical results on PSTN controllability checking,
and leave the related improvements for future work.

node.Simulate() The classical MCTS approach for sim-
ulating the remaining decisions and outcomes would con-
sist in sampling everything at random, until a final state is
reached. In the specific context of PSTNs however, it has
been observed that executing time points as soon as possible
provides good results in general (Saint-Guillain et al. 2020).
Therefore, our approach is to follow the NextFirst dispatch-
ing protocol during simulations.

node.BackPropagate() Once the simulation hits a termi-
nal state, its success value (0 or 1) must be backpropagated
from the child node that initiated the simulation, up to the
root node, thereby updating the estimated values of all the
nodes along that path. The “expectiminimax” rule (Melké
and Nagy 2007) is applied, yet adapted to a single player
stochastic game: if the node n is terminal, then its value
V(n) is equal to the success value; if it is a decision node,
then its value is updated to V(n) = max.echidren V (¢); if
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Remark that this rule eventually converges to the optimal
decision/outcome tree formulated in Equation (2).

root.BestChild() At a current time ¢, the root node is usu-
ally a decision node. Once the computational budget is
reached, we are interested in the best possible decisions, be-
low the root node. As shown in Fig. 3 however, a path of our
MCTS tree does not simply alternate decision and chance
nodes. If, as for the PSTN of Fig. 1 and the associated MCTS
tree of Fig. 3, two decisions (¢; and t7) follow the root node,
then the best two decisions must be returned. In our exam-
ple, BestChild() is called at root node to select the best direct
child for ¢, and then is called in turn on that child to select
the best subsequent decision for 7. Amongst the possible
choices, we simply select the child maximizing V' (n).

4 The Versatility of the Simulation Paradigm

A basic Monte Carlo simulation could not converge to op-
timal decisions, because any simulation requires to follow
a predefined, often simplistic, execution strategy (dispatch-
ing protocol) such as NextFirst — otherwise each simula-
tion amounts at solving the NP-hard multistage optimization
problem, which the simulation aims at approximating! In
other words, running a Monte Carlo simulation forever sim-
ply converges to the expected value of the predefined strat-
egy. On the contrary, Monte Carlo Tree Search combines
Monte Carlo simulation with the construction of a complete,
optimal, decision tree, which ultimately (i.e. asymptotically)
converges to the true optimal decisions. Thanks to the simu-
lation side, MCTS allows to simply handle very complicated
concepts, some of them being described in this section, such
as dependent random variables or even endogenous uncer-
tainty (which is a topic rarely covered in the literature).

Maximizing the Expected Ultility: dealing with
Cutoffs and Precondition chains

A classical PSTN assumption is that the PSTN execution
fails as soon as an activity is failed at being executed within
the time constraints. In Saint-Guillain et al. (2020), we pro-
posed PSTNs alternative execution assumptions, in which
activities can be safely interrupted, using a predefined deter-
ministic cutoff time or duration, hence allowing the execu-
tion to continue. In our rover example, this could be true for
any experimental activity which are somewhat isolated.

Nonetheless, interrupting an activity may however turn
impossible to carry out a related subset of remaining ones,
such as for example, an experiment composed of several
tasks. In our example of Fig. 1, interrupting a driving ac-
tivity would necessarily compromise the associated exper-
iment, although it does not prevent from further relaying.
In other words, the driving activity is a precondition for the
subsequent experiment. In practice, precondition chains may
span over multiple subsequent activities: if a task C depends
on successful execution of B, which in turn depends on a
task A, then interrupting A would prevent from executing
both B and C.

Yet, all activities do not necessarily have the same pri-
ority, and some may even be considered mandatory (unin-
terruptible), such as the relay activities in our example. A
utility value can therefore be assigned to interruptible ac-
tivities, leading to the objective of maximizing the overall
expected utility of the network, that is, the expected sum of
the task utilities that can be successfully dispatched, whereas
failing at dispatching a mandatory activity results in a zero
utility. More generally, mandatory tasks may be assigned a
very high utility value w.rt. interruptible ones.

MCTS with Utility, Cutoffs and Preconditions. Our
PSTN specific instantiation of the MCTS framework is able
to deal with these new concepts with a few straightforward
adaptations. The node.IsTerminal() and node.ExpandOne()
functions are impacted. A node is then terminal when ei-
ther an inconsistency is detected (or if it reached its prede-
fined cutoff), or when all time points have been attributed
a value. At deciding for the execution time of a task in
node.ExpandOne() function, the resulting time then never
exceeds the predefined cutoff. Furthermore, depending on
the history, the task at stake will not be executed (i.e. as-
signed duration zero) if some of its preconditions is not met,
such as a past required activity that has been interrupted by
hitting its cutoff (or not executed for similar reasons). Fi-
nally, the computation of V' (n) at a terminal node is not zero
or one anymore, but the sum (over the MCTS tree path) of
the utilities of the tasks that did not hit their cutoff time,
or zero if some mandatory task did. The resulting V(n)
is then backpropagated the exact same way as aforemen-
tioned. Eventually and following Eq. (2), the average value
at V(root) will necessarily converge to the expected total
PSTN utility.

Dealing with resources and exotic probabilities. Other
PSTN extensions, such as resource usage, can be handled
by adapting the node. ExpandOne() function, assuming that
node.Simulate() uses the same mechanism to sample deci-
sions and outcomes. One just need to save the current re-
source usage state, such as energy consumption, at each
node of the MCTS tree and deduce, at the current deci-
sion node, the possible children accordingly. When it comes
to chance nodes, because the children are simply randomly
sampled from each random variable distribution, any pos-
sible distribution may be considered. In fact, considering
the current history of decisions and outcomes at a cer-
tain chance node, dealing with dependent random variables
(i.e. possible outcomes being influenced by past realiza-
tions), as well as endogenous uncertainty (i.e. influenced by
past decisions) becomes just a matter of implementing the
node.ExpandOne() function.

5 Experimental analysis and validations

The rover PSTN example of Fig. 1 constitutes an interest-
ing benchmark for analyzing the behavior of the proposed
framework. Since computing the probability of success of
the optimal decisions (i.e. the Degree of Dynamic Controlla-
bility as defined in Saint-Guillain et al., 2020) is intractable,
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Figure 4: Evolution of the V' (root) estimated root node value, which predicts the robustness of the network under NextFirst,
since decision nodes are limited to one child, for PSTN example of Fig. 1. A basic Monte Carlo simulation, in red, converges

to the true robustness value.

there is the need for approximation methods such as the one
proposed here. In this case, we must rely on other indicators
to empirically validate our method. We then first consider
the robustness of the PSTN under the NextFirst dispatching
protocol, which can be either computed exactly, or approx-
imated with an arbitrary precision using Sample Average
Approximation (SAA), namely pure Monte Carlo simula-
tion. Thereafter, more elaborated dispatching decisions will
be considered by allowing Lila to try postponing the begin-
ning of PSTN activities, leading to an approximation of the
true probability of success under perfect reoptimization.

Implementing NextFirst dispatching protocol. Given
some parametrization that restricts Lila’s decisions to fol-
low NextFirst protocol, the value of V (root) node should
converge to the robustness under NextFirst. We hence limit
the number of decision node children to one, while vary-
ing the number of chance node children. As explained with
node.ExpandOne() function, the resulting MCTS tree should
then approximate the behavior of the PSTN under NextFirst.

Figure 4 shows how our V(root) estimated root node
value converges compared to the the success rate measured
by SAA (Monte Carlo), as the number of iterations (i.e.
nodes for MCTS) increases for the PSTN depicted in Fig.
1. A well-known issue of MCTS, when limiting the num-
ber of chance node children (or also decision nodes in gen-
eral), is that the first nodes (in terms of depth) of the tree
impose a strong bias. A a consequence, the entire tree and
therefore the estimated probability of success as V' (root)
strongly depend on the sampled durations of t2 and ¢g. In
fact, the plot shows two different runs of Lila, given 100
children (MCTS 100) at each chance node, for which each
run converge to a somehow inaccurate approximation of the

NextFirst robustness (which is of ~11.35%). The approxi-
mation improves as the number of chance children increases
to 1000, yet the strong bias is still visible in the plot. Finally,
allowing an infinite number of chance children eventually
correctly converges. Note that in this case, MCTS nodes at
depth 4 are never visited, as the algorithm keeps always ex-
panding at the same chance node for t5. The progressive
widening (MCTS PW) technique, which gradually grows
the maximum number of children, have been here tested on
chance nodes. Given adequate parameters, empirically set to
8 = 0.3 and o = 0.4 in this experiment, Lila eventually
converges accurately. These 700000+ iterations require ap-
proximately 10 seconds, on an Intel Core i7 2.3GHz, 16GB
3733MHz, CLang 12.0.

Approximating optimal dispatching. We now allow the
number of children at decision nodes to grow as well, by
using the progressive widening technique. This eventually
enables MCTS to explore more elaborated decisions than
just simply dispatch everything as soon as possible. Figure
5 shows how delaying the execution of rover driving activi-
ties, represented by time points ¢; and ¢7, improves the esti-
mated probability of success. Eventually, six different five-
minute runs of Lila all converge to ~48.5% chances of suc-
cess, where ¢; should best be delayed to time 1~3 and ¢7 to
time 3~4, depending on the run.

Recall that under NextFirst dispatching protocol, the suc-
cess probability was of ~ 11.35% only. We clearly observe
here that NextFirst produces significantly suboptimal dis-
patching decisions (by starting each activity as soon as pos-
sible), in the specific case of the PSTN at stake, which is the
one depicted in Fig. 1.
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Figure 5: Top: Evolution of the V (root) estimated root node value, when using progressive widening on both decision and
chance nodes, for several independent runs of Lila. Bottom: Evolution of the best decisions as returned by the root.BestChild()

function, for both ¢; and ¢7, during one run of five minutes.

6 Conclusions and Future Work

‘We show how versatile the MCTS framework can be, when
specialized to PSTN dispatching. It has the unlimited flexi-
bility offered by the simulation paradigm. It is conjectured to
asymptotically converges to optimal decisions (the demon-
stration is left for future work). In theory, it handles any
possible continuous or discrete, even non-parametric, prob-
ability distributions, as well as inter-dependencies between
random variables, exogenous as well as endogenous uncer-
tainty. We conduct an preliminary experimental analysis,
validating our algorithm, called Lila, on a simple PSTN ex-
ample. Finally, we show how our easily algorithm may be
adapted to deal with activity cutoff times and precondition
chains (important in certain applications such as planetary
rovers), hence providing a first solution framework to the
problem of maximizing PSTN expected utility.

Future research directions.

Also related to the fact that our MCTS must deal with
continuous domains, a node.SelectChild() function inspired
from the theoretical results of Yee, Lisy, and Bowling 2016
may also be more appropriate than classical UCT. Finally,
the literature already counts a number of improvements and
extensions to classical MCTS (Browne et al. 2012), many of
them being worth experimenting in the particular context of
PSTN dispatching game. In addition to the aforementioned
points, the PSTN extensions should be considered as well.
In particular, accounting for activity resource usage, such
as energy consumption, is of great interest in the context of
Mars 2020 and future planetary rovers. In what follows we
elaborate on additional promising directions.

Offline problem: DDC approximation. The experimen-
tal analysis conducted in this preliminary research is focused
on only one PSTN instance, namely that of Fig. 1, allow-
ing interesting insights on the algorithm behavior. A more
comprehensive experimental study should be conducted on
well known PSTN benchmarks, such as those recently con-
sidered for the a priori problem of approximating a PSTN
robustness, or degree of dynamic controllability (DDC).

Online dispatching. This preliminary research includes
an experimental analysis which considers the problem of
evaluating the a priori PSTN robustness, but does not yet
include online dispatching. A direct extension of this work
is therefore to integrate Lila in an online dispatching sim-
ulator, in order to test its online reoptimization capabilities
on well-known PSTN benchmarks. Since our algorithm is
based on the MCTS framework which aims at dealing with
fundamentally online problems, this should come with very
little updates.

Proof of Concept: Mars 2020 planetary rover. How to
define adequate cutoffs for M2020 task networks currently
constitutes a real issue. We will i) evaluate the use of Lila
to approximate the true DDC and expected utility of M2020
task networks, while considering cutoffs and precondition
chains, and ii) will further try adapt the predefined cutoff
times of some or all activities as part of the decisions, in or-
der to maximize the success probability or the expected util-
ity of the PSTNs. The latter (ii) is however a very hard prob-
lem. We will also consider iii) PSTN with resources (e.g. en-
ergy consumption) in addition to cutoffs and preconditions
chains.
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